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Abstract: Software defect prediction is essential for enhancing software quality and reducing testing costs by 

identifying defective modules for targeted testing. Utilizing benchmark datasets such as CM1, JM1, MC2, MW1, 

PC1, PC3, and PC4, this work explores advanced techniques like Synthetic Minority Over-sampling Technique 

(SMOTE) and Particle Swarm Optimization (PSO) for addressing class imbalance and feature selection 

challenges. A Stacking Classifier integrating Decision Tree, Random Forest, and LightGBM models has been 

employed, achieving high accuracy across all datasets. The proposed approach emphasizes leveraging ensemble 

learning to enhance prediction performance by combining the strengths of multiple classifiers. Comprehensive 

evaluations demonstrate the robustness and reliability of the proposed model, with results highlighting its superior 

accuracy and predictive capability in identifying defective software modules. This work aims to advance software 

defect prediction by providing a cost-effective and efficient solution for early defect detection, ensuring improved 

software quality and optimized resource allocation during testing. 

Index Terms - Machine learning, software defect prediction, ensemble classification, heterogeneous classifiers, 

random forest, support vector machine, naïve Bayes. 

1. INTRODUCTION 

In today's interconnected global society, the 

software industry plays a critical role in driving 

progress across all sectors. Rapid globalization has 

effectively transformed the world into a "global 

village," where software applications are not only 

ubiquitous but also integral to daily life, business 

operations, and critical infrastructure [1], [2]. The 

COVID-19 pandemic has further accelerated this 

reliance on software systems, as individuals and 

organizations increasingly depend on online 

platforms for communication, commerce, remote 

work, and other essential activities [3], [4], [5]. As 

software continues to shape every aspect of the 

modern world, ensuring its quality has become a key 

priority for the industry. 

In the context of the Software Development Life 

Cycle (SDLC), software development and quality 

assurance (QA) are tightly linked through a 

collaborative workflow. The process begins with the 

development team implementing the code, which is 

then handed over to the QA team for rigorous 

testing. This evaluation phase involves identifying 

and reporting defects or issues in the software. 

Feedback is provided to the development team, 

which works on rectifying the reported defects. This 

iterative process continues until a high-quality, 

defect-free software product is achieved [6], [7]. 
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Figure 1 illustrates this workflow from development 

to QA within the SDLC. The primary objective of 

this process is to ensure that the software meets the 

required standards of quality, functionality, and 

reliability before it is released to end-users. 

However, achieving defect-free software is not 

without its challenges. Three critical factors—time, 

financial resources, and skilled manpower—

significantly impact the effectiveness of software 

quality assurance. As the demand for faster software 

delivery grows, the need for efficient and cost-

effective testing strategies becomes more pressing. 

Companies are under increasing pressure to deliver 

high-quality software within tight deadlines while 

minimizing costs and optimizing the use of their 

resources [8]. This has led to the growing interest in 

automated approaches to defect prediction as a 

means to streamline the QA process. 

Software Defect Prediction (SDP) has emerged as a 

promising solution to address these challenges. SDP 

involves the application of machine learning (ML) 

techniques to analyze historical software data and 

predict the likelihood of defects in future software 

modules. By using various software metrics—such 

as code complexity, size, and historical defect 

data—SDP models can help teams identify potential 

defects before the testing phase [9]. This proactive 

approach enables organizations to prioritize their 

testing efforts, reduce the likelihood of post-release 

defects, and ultimately improve software quality 

while optimizing resource usage [10]. 

Consequently, SDP is gaining traction as a vital tool 

in modern software development, helping 

organizations meet the growing demand for reliable, 

high-quality software in an increasingly complex 

and interconnected world. 

2. LITERATURE SURVEY 

Software Defect Prediction (SDP) has become a 

crucial research area due to the increasing demand 

for high-quality software and the pressing need to 

optimize resources, time, and manpower in software 

development. The goal of SDP is to identify 

defective software modules early in the development 

cycle, thus allowing for targeted testing and 

debugging. Over the past few decades, various 

machine learning techniques and ensemble methods 

have been explored to improve the predictive 

accuracy and reliability of software defect 

predictions. This literature survey explores the 

significant contributions and methodologies in this 

field, focusing on feature selection, class imbalance 

problems, and ensemble learning approaches. 

Neural networks have demonstrated remarkable 

capabilities in detecting complex patterns in 

software metrics, which has made them a popular 

choice for software defect prediction models. M. S. 

Alkhasawneh [11] presented a comprehensive study 

on the use of neural networks combined with feature 

selection techniques for software defect prediction. 

The study emphasizes the importance of identifying 

the most relevant features in the dataset to improve 

prediction accuracy. Feature selection helps reduce 

the dimensionality of the data, which leads to faster 

training times and less overfitting, ultimately 

resulting in more robust defect prediction models. 

Alkhasawneh's research concludes that neural 

networks, when combined with effective feature 

selection methods, can outperform traditional 

machine learning classifiers in terms of predictive 

accuracy. 

Similarly, the work of T. F. Husin and M. R. Pribadi 

[12] explored the implementation of Least-Squares 

Support Vector Machines (LSSVM) for defect 

classification. In their approach, feature selection 

was employed to identify the key features from the 

dataset that had the most significant impact on the 
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prediction process. The authors reported that this 

hybrid approach improved prediction performance, 

demonstrating that feature selection plays a critical 

role in enhancing the accuracy of machine learning 

models used for defect prediction. 

One of the major challenges in SDP is the class 

imbalance problem, where defective software 

modules are often a minority class compared to non-

defective modules. This imbalance can lead to 

biased models that favor the majority class, thereby 

reducing the effectiveness of the predictions. 

Various data sampling methods have been explored 

to address this issue, including oversampling, 

undersampling, and synthetic data generation 

techniques such as SMOTE (Synthetic Minority 

Over-sampling Technique). 

B. J. Odejide et al. [14] conducted an empirical study 

on different data sampling methods to address the 

class imbalance problem in SDP. The authors 

compared traditional sampling methods, such as 

random oversampling and undersampling, with 

more advanced techniques like SMOTE. Their 

findings indicated that SMOTE-based sampling 

methods provided superior performance by 

generating synthetic samples of the minority class, 

which helped balance the dataset and improve model 

accuracy. Additionally, the study highlights that 

combining data sampling techniques with machine 

learning models like Random Forest and SVM can 

significantly improve the detection of defective 

software modules. 

Another significant contribution to addressing class 

imbalance was made by A. O. Balogun et al. [18], 

who explored the use of ensemble learning 

techniques combined with SMOTE-based methods 

for software defect prediction. Their research 

demonstrated that homogeneous ensemble methods, 

which combine multiple instances of the same 

classifier, can enhance predictive accuracy in 

imbalanced datasets. The authors proposed a voting-

based ensemble method that aggregates the 

predictions of different classifiers, thus creating a 

more reliable and balanced defect prediction model. 

Ensemble learning has emerged as a powerful 

approach in SDP due to its ability to combine the 

strengths of multiple classifiers to produce a more 

accurate and robust final prediction. Several studies 

have explored different ensemble techniques, 

including voting-based, bagging, and stacking 

methods. 

F. Jiang et al. [16] introduced a random approximate 

reduct-based ensemble learning approach for 

software defect prediction. The authors combined 

multiple classifiers in an ensemble to reduce the 

variance and improve the robustness of the model. 

Their approach also incorporated feature selection 

methods to identify the most relevant features from 

the dataset, which further enhanced the accuracy of 

the predictions. The ensemble model outperformed 

several state-of-the-art machine learning algorithms, 

demonstrating the effectiveness of ensemble 

learning in SDP. 

The work of A. O. Balogun et al. [19] extended the 

idea of ensemble learning by incorporating a ranking 

and evaluation framework based on the Analytic 

Network Process (ANP). The study evaluated 

different ensemble classifiers using ANP to 

determine the most effective combination of 

classifiers for software defect prediction. The 

authors found that ensemble methods consistently 

outperformed single classifiers, with the best results 

achieved by models that combined decision trees, 

random forests, and support vector machines. 

A study conducted by R. J. Jacob et al. [20] focused 

on the application of voting-based ensemble 

classification for software defect prediction. The 
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authors explored the performance of several 

ensemble methods, including majority voting, 

weighted voting, and probabilistic voting, to 

improve the accuracy of defect predictions. Their 

findings showed that voting-based methods were 

particularly effective in combining the strengths of 

different classifiers, such as Random Forest, Naive 

Bayes, and Support Vector Machines, to produce 

more reliable predictions. The study concluded that 

voting-based ensemble techniques offer a significant 

advantage in defect prediction, particularly when 

dealing with imbalanced datasets. 

In addition to voting-based methods, stacking 

ensembles have also gained attention in the 

literature. Stacking combines the predictions of 

multiple classifiers by using another machine 

learning model, often referred to as the meta-learner, 

to make the final prediction. A. Alsaeedi and M. Z. 

Khan [21] conducted a comparative study of 

different stacking ensemble methods for software 

defect prediction. Their research explored various 

combinations of base classifiers, such as Decision 

Trees, SVM, and Artificial Neural Networks, and 

used different meta-learners to optimize the final 

predictions. The results of the study demonstrated 

that stacking ensembles consistently outperformed 

individual classifiers, with the best performance 

achieved by models that combined decision trees 

and neural networks. 

3. METHODOLOGY 

The proposed system aims to enhance software 

defect prediction by leveraging advanced machine 

learning techniques and ensemble learning 

strategies. The system incorporates individual 

classifiers such as Random Forest, Support Vector 

Machine (SVM), Naive Bayes, and Multi-Layer 

Perceptron (MLP) for baseline defect prediction 

performance. To further improve accuracy and 

robustness, ensemble methods like an Adaptive 

Voting Classifier, which combines the strengths of 

Random Forest, SVM, Naive Bayes, and MLP, are 

utilized. Additionally, a Stacking Classifier 

integrating Decision Tree, Random Forest, and 

LightGBM models is implemented to exploit diverse 

learning patterns and enhance defect detection 

capability. Techniques like Synthetic Minority 

Over-sampling Technique (SMOTE) are employed 

to address class imbalance, while Particle Swarm 

Optimization (PSO) aids in optimal feature 

selection, ensuring the model is both efficient and 

effective. This system is designed to identify 

defective modules accurately, prioritizing high-

quality software development and reducing costs 

associated with exhaustive testing processes. 

 

Fig 1 Proposed Architecture 

The diagram illustrates a typical machine learning 

workflow for classification tasks. The process 

begins with a dataset, which is then divided into 

training and testing sets. The training data undergoes 

pre-processing to prepare it for model training. 

Subsequently, various machine learning algorithms, 

including Random Forest (RF), Naive Bayes (NB), 

Support Vector Machine (SVM), and Multilayer 

Perceptron (MLP), are trained on the pre-processed 
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training data. Once trained, these models are used to 

classify the testing data, and their predictions are 

compared to the actual labels to evaluate their 

performance. Additionally, ensemble methods like 

Voting Classifier and Stacking Classifier are 

employed to combine the predictions of multiple 

models, potentially improving overall accuracy. 

 

i) Dataset: 

The first step in the training phase involves the 

collection of historical software defect datasets. For 

this study, well-established benchmark datasets 

from NASA’s Metrics Data Program (MDP) 

repository were selected, including CM1, JM1, 

MC2, MW1, PC1, PC3, and PC4. These datasets are 

commonly used in software defect prediction 

research, ensuring representativeness and 

comparability with existing studies. Each dataset 

corresponds to a single software component, with 

instances representing software modules. These 

modules contain various software quality attributes, 

such as LOC_COMMENT, LOC_TOTAL, 

CALL_PAIRS, HALSTEAD_LENGTH, and 

HALSTEAD_CONSTANT, recorded during the 

SDLC. The dependent attributes are used for 

prediction, while the independent attribute indicates 

whether a module is defective or non-defective [25]. 

 

Fig.2 Dataset for CM1 

 

Fig.3 Datasets for JM1 

 

Fig.4 Datasets for MC2 

 

Fig.5 Datasets for MW1 

 

Fig.6 Datasets for PC1 

 

Fig.7 Datasets for PC3 

 

Fig.8 Datasets for PC4 

ii) Pre-Processing: 

a) Data Processing: Data processing involves 

crucial steps to ensure the dataset's quality and 

suitability for predictive modeling. Initially, 

duplicate data entries are identified and removed to 

avoid redundancy and ensure consistency. 

Unnecessary or irrelevant features are dropped 

through cleaning to streamline the dataset. Label 
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encoding is applied to convert categorical variables 

into numerical format, enabling compatibility with 

machine learning algorithms. These preprocessing 

steps enhance the dataset's integrity and lay a strong 

foundation for accurate and efficient model training. 

b) Feature Selection: Feature selection focuses on 

isolating the most relevant variables for prediction. 

The input features (X) and target variable (y) are 

carefully identified and extracted from the dataset. 

This ensures the machine learning model receives 

only the necessary data for training and testing, 

reducing noise and computational overhead. By 

refining the dataset to include only critical features 

and the corresponding output labels, feature 

selection optimizes the model's performance and 

predictive accuracy. 

c) Oversampling with SMOTE: Synthetic Minority 

Over-sampling Technique (SMOTE) addresses 

class imbalance in the dataset by generating 

synthetic samples for the minority class. This 

method creates new data points by interpolating 

between existing samples, ensuring a balanced 

distribution across classes. By enhancing the 

representation of the minority class, SMOTE 

prevents bias in machine learning models and 

improves their ability to identify defective modules 

accurately, especially in datasets with significant 

class imbalances. 

d) Feature Selection using PSO: Particle Swarm 

Optimization (PSO) is employed for feature 

selection to identify the most informative subset of 

features. Inspired by the social behavior of particle 

swarms, PSO iteratively evaluates combinations of 

features to maximize the model's performance. By 

retaining only the most relevant attributes and 

discarding redundant or irrelevant ones, PSO 

enhances the computational efficiency and 

predictive accuracy of the defect prediction model, 

ensuring an optimal balance between dataset 

complexity and performance. 

iii) Training & Testing: 

Training and testing involve splitting the processed 

dataset into two subsets: one for training the model 

and the other for evaluation. The training subset is 

used to build and optimize the model, allowing it to 

learn patterns from the data. Once the model is 

trained, it is tested on the testing subset, which it has 

never seen before, to assess its generalization ability. 

This approach ensures that the model can make 

accurate predictions on new, unseen data, providing 

a reliable measure of its performance. 

iv) Algorithms: 

Random Forest: Random Forest is an ensemble 

learning method that constructs multiple decision 

trees during training and merges their outputs to 

improve accuracy and control overfitting. In this 

project, it is used to predict software defects by 

aggregating the results of multiple trees to provide a 

more stable and accurate classification of whether a 

module is defective or non-defective. 

SVM (Support Vector Machine): SVM is a 

supervised learning model that finds the optimal 

hyperplane to separate classes in high-dimensional 

space. In this project, SVM is employed to classify 

software modules based on quality attributes, 

distinguishing between defective and non-defective 

modules with a high level of precision. 

Naive Bayes: Naive Bayes is a probabilistic 

classifier based on Bayes' theorem, assuming 

independence between features. It is used in this 

project to predict software defects by calculating the 

likelihood of defectiveness based on historical data, 

making it effective for handling categorical data and 

large datasets. 



1576                                                          JNAO Vol. 16, Issue. 1:  2025 
 

MLP (Multi-Layer Perceptron): MLP is a type of 

artificial neural network with multiple layers of 

neurons, used for classification tasks. In this project, 

MLP is applied to learn complex patterns in the data 

and predict software defects by modeling non-linear 

relationships between features and the target 

variable. 

Adaptive Voting Classifier (RF + SVM + NB + 

MLP): The Adaptive Voting Classifier combines 

predictions from Random Forest, SVM, Naive 

Bayes, and MLP using a weighted voting 

mechanism to improve overall prediction accuracy. 

This ensemble method leverages the strengths of 

each individual model to provide a robust prediction 

for software defects. 

Stacking Classifier (DT + RF with LightGBM): 

The Stacking Classifier integrates Decision Trees 

(DT), Random Forest (RF), and LightGBM to create 

a meta-model that improves predictive performance 

by learning from the outputs of base models. In this 

project, it is used to enhance defect prediction 

accuracy by combining diverse models and 

leveraging their individual strengths. 

4. EXPERIMENTAL RESULTS 

Accuracy: The accuracy of a test is its ability to 

differentiate the patient and healthy cases correctly. 

To estimate the accuracy of a test, we should 

calculate the proportion of true positive and true 

negative in all evaluated cases. Mathematically, this 

can be stated as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP + TN

TP + FP + TN + FN
(1) 

Precision: Precision evaluates the fraction of 

correctly classified instances or samples among the 

ones classified as positives. Thus, the formula to 

calculate the precision is given by: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
True Positive

True Positive + False Positive
(2) 

Recall: Recall is a metric in machine learning that 

measures the ability of a model to identify all 

relevant instances of a particular class. It is the ratio 

of correctly predicted positive observations to the 

total actual positives, providing insights into a 

model's completeness in capturing instances of a 

given class. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP +  FN
(3) 

F1-Score: F1 score is a machine learning evaluation 

metric that measures a model's accuracy. It 

combines the precision and recall scores of a model. 

The accuracy metric computes how many times a 

model made a correct prediction across the entire 

dataset. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑅𝑒𝑐𝑎𝑙𝑙 X 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
∗ 100(1) 

Sensitivity: Sensitivity is a measure of how well a 

test or instrument can identify a condition in a 

subject. It's calculated by comparing the number of 

people who test positive for a condition to the actual 

number of people who have the condition. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
(5) 

Specificity: It is calculated by identifying the 

number of people who test negative for a condition 

and dividing it by the total number of people without 

the condition, which includes those who tested 

negative and the false positives—those who tested 

positive but did not have the disease. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
(6) 
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AUC-ROC Curve: The AUC-ROC Curve is a 

performance measurement for classification 

problems at various threshold settings. ROC plots 

the True Positive Rate against the False Positive 

Rate. AUC quantifies the overall ability of the model 

to distinguish between classes, where a higher AUC 

indicates better model performance. 

𝐴𝑈𝐶 = ∑(𝐹𝑃𝑅𝑖+1 − 𝐹𝑃𝑅𝑖) ∙
𝑇𝑃𝑅𝑖+1 + 𝑇𝑃𝑅𝑖

2

𝑛−1

𝑖=1

(7) 

Tables (1 to 7) evaluate the performance metrics—

accuracy, precision, recall, F1-score, AUC Score, 

Specificity and Sensitivity—for each algorithm. 

Across all datasets, the Stacking Classifier 

consistently outperforms all other algorithms. The 

tables also offer a comparative analysis of the 

metrics for the other algorithms

Table.1 Performance Evaluation Metrics for CM1 

ML Model Accuracy Precision Recall F1 Score AUC Score Specificity Sensitivity 

Random Forest 0.918 0.921 0.918 0.918 1.000 0.918 0.918 

Support Vector Machine 0.713 0.719 0.713 0.714 0.833 0.714 0.713 

Naive Bayes 0.719 0.765 0.719 0.726 0.783 0.721 0.719 

MLP Classifier 0.860 0.867 0.860 0.860 0.961 0.859 0.860 

Adaptive Voting Classifier 0.865 0.866 0.865 0.866 0.971 0.865 0.865 

Stacking Classifier 0.924 0.924 0.924 0.924 1.000 0.924 0.924 

Graph.1 Comparison Graphs for CM1 

 

Table.2 Performance Evaluation Metrics for JM1 

ML Model Accuracy Precision Recall F1 Score AUC 

Score 

Specificity Sensitivity 

Random Forest 0.840 0.840 0.840 0.840 1.000 0.840 0.840 
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Accuracy Precision Recall F1 Score AUC Score Specificity Sensitivity
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Support Vector Machine 0.588 0.786 0.588 0.633 0.643 0.588 0.588 

Naive Bayes 0.582 0.825 0.582 0.639 0.624 0.582 0.582 

MLP Classifier 0.608 0.622 0.608 0.611 0.613 0.608 0.608 

Adaptive Voting Classifier 0.661 0.735 0.661 0.674 0.851 0.661 0.661 

Stacking Classifier 0.836 0.837 0.836 0.836 1.000 0.836 0.836 

Graph.2 Comparison Graphs for JM1 

 

Table.3 Performance Evaluation Metrics for MC2 

ML Model Accuracy Precision Recall F1 Score AUC 

Score 

Specificity Sensitivity 

Random Forest 0.755 0.768 0.755 0.756 1.000 0.758 0.755 

Support Vector Machine 0.633 0.664 0.633 0.639 0.702 0.627 0.633 

Naive Bayes 0.694 0.838 0.694 0.719 0.750 0.683 0.694 

MLP Classifier 0.694 0.702 0.694 0.695 0.913 0.691 0.694 

Adaptive Voting Classifier 0.735 0.804 0.735 0.745 0.954 0.727 0.735 

Stacking Classifier 0.735 0.754 0.735 0.737 1.000 0.739 0.735 

Graph.3 Comparison Graphs for MC2 
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Table.4 Performance Evaluation Metrics for MW1 

ML Model Accuracy Precision Recall F1 Score AUC 

Score 

Specificity Sensitivity 

Random Forest 0.919 0.919 0.919 0.919 1.000 0.919 0.919 

Support Vector Machine 0.743 0.782 0.743 0.748 0.772 0.743 0.743 

Naive Bayes 0.699 0.700 0.699 0.699 0.726 0.699 0.699 

MLP Classifier 0.794 0.798 0.794 0.795 0.923 0.794 0.794 

Adaptive Voting Classifier 0.801 0.815 0.801 0.803 0.933 0.801 0.801 

Stacking Classifier 0.897 0.901 0.897 0.897 1.000 0.897 0.897 

Graph.4 Comparison Graphs for MW1 
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Table.5 Performance Evaluation Metrics for PC1 

ML Model Accuracy Precision Recall F1 Score AUC Score Specificity Sensitivity 

Random Forest 0.938 0.938 0.938 0.938 1.000 0.938 0.938 

Support Vector Machine 0.780 0.782 0.780 0.781 0.867 0.780 0.780 

Naive Bayes 0.638 0.771 0.638 0.664 0.813 0.640 0.638 

MLP Classifier 0.886 0.893 0.886 0.887 0.975 0.886 0.886 

Adaptive Voting Classifier 0.871 0.871 0.871 0.871 0.974 0.871 0.871 

Stacking Classifier 0.922 0.923 0.922 0.922 1.000 0.923 0.922 

Graph.5 Comparison Graphs for PC1 
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Table.6 Performance Evaluation Metrics for PC3 

ML Model Accuracy Precision Recall F1 Score AUC 

Score 

Specificity Sensitivity 

Random Forest 0.936 0.937 0.936 0.936 1.000 0.936 0.936 

Support Vector Machine 0.829 0.835 0.829 0.829 0.870 0.829 0.829 

Naive Bayes 0.668 0.752 0.668 0.682 0.788 0.668 0.668 

MLP Classifier 0.850 0.855 0.850 0.850 0.941 0.850 0.850 

Adaptive Voting Classifier 0.875 0.885 0.875 0.875 0.978 0.875 0.875 

Stacking Classifier 0.924 0.927 0.924 0.924 1.000 0.924 0.924 

Graph.6 Comparison Graphs for PC3 

 

Table.7 Performance Evaluation Metrics for PC4 
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ML Model Accuracy Precision Recall F1 Score AUC 

Score 

Specificity Sensitivity 

Random Forest 0.929 0.930 0.929 0.929 1.000 0.929 0.929 

Support Vector Machine 0.796 0.820 0.796 0.798 0.905 0.796 0.796 

Naive Bayes 0.700 0.774 0.700 0.711 0.826 0.700 0.700 

MLP Classifier 0.905 0.910 0.905 0.906 0.982 0.905 0.905 

Adaptive Voting Classifier 0.904 0.904 0.904 0.904 0.987 0.904 0.904 

Stacking Classifier 0.935 0.936 0.935 0.935 1.000 0.935 0.935 

Graph.7 Comparison Graphs for PC4 

 

Accuracy is represented in light blue, precision in orange, recall in grey, F1-Score in light yellow, AUC in blue, 

Specificity in green and Sensitivity in dark blue in Graphs (1 to 7). In comparison to the other models, the Stacking 

Classifier shows superior performance across all datasets, achieving the highest values. The graphs above visually 

illustrate these findings. 

 

Fig.9 Home Page 

In the above figure 9, this is a user interface 

dashboard, it is a welcome message for navigating 

page. 

 

Fig.10 User input Page 
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In the above figure 10, this is a user input page, using 

this user can upload Data from DatasetCM1. 

 

Fig.11 Test result for CM1 

In the above figure 11, this is a result screen, in this 

user will get output. 

 

Fig.12 User input Page 

In the above figure 12, this is a user input page, using 

this user can upload data from PC4 dataset. 

 

Fig.13 Test result for PC4 

In the above figure 13, this is a result screen, in this 

user will get output. 

5. CONCLUSION 

Software defect prediction aims to identify faulty 

modules before the testing phase, enabling a focus 

on testing only those modules likely to have defects. 

An efficient defect prediction model significantly 

reduces software development costs by optimizing 

resources during quality assurance activities. Using 

datasets such as CM1, JM1, MC2, MW1, PC1, PC3, 

and PC4, the system integrates advanced techniques 

like SMOTE for addressing class imbalance and 

Particle Swarm Optimization (PSO) for feature 

selection, ensuring balanced and relevant input data 

for training. Among the various approaches 

evaluated, the Stacking Classifier demonstrated the 

highest accuracy across all datasets, effectively 

leveraging diverse learning patterns to enhance 

prediction capabilities. This combination of 

techniques and high-performance ensemble learning 

underscores the importance of identifying defective 

modules with precision, streamlining testing 

processes, and contributing to the delivery of high-

quality software within reduced timelines and costs. 

6. FUTURE SCOPE 

Future work can explore the integration of deep 

learning models, such as CNNs and LSTMs, to 

capture complex patterns in software defect data. 

Incorporating explainable AI techniques could 

enhance the interpretability of predictions, aiding 

developers in understanding defect causes. 

Expanding the approach to larger, real-world 

datasets and dynamic software systems would 

improve scalability and generalizability. 

Additionally, combining advanced sampling 

methods with optimization algorithms may further 

refine defect prediction performance, supporting 
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cost-effective, high-quality software development in 

diverse domains. 
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