
Journal of Nonlinear Analysis and Optimization

Vol. 16, Issue. 1: 2025

ISSN : 1906-9685

ENHANCING SOFTWARE DEFECT PREDICTION WITH A

HYBRID MACHINE LEARNING ENSAMBLE MODEL
Mrs. J. KUMARI1, GUNJI.LALITA2

#1 Assistant Professor Department of Master of Computer Applications

#2 Pursuing M.C.A QIS COLLEGE OF ENGINEERING & TECHNOLOGY

Vengamukkapalem(V), Ongole, Prakasam dist., Andhra Pradesh- 523272

Abstract: Software defect prediction is essential for enhancing software quality and reducing testing costs by

identifying defective modules for targeted testing. Utilizing benchmark datasets such as CM1, JM1, MC2, MW1,

PC1, PC3, and PC4, this work explores advanced techniques like Synthetic Minority Over-sampling Technique

(SMOTE) and Particle Swarm Optimization (PSO) for addressing class imbalance and feature selection

challenges. A Stacking Classifier integrating Decision Tree, Random Forest, and LightGBM models has been

employed, achieving high accuracy across all datasets. The proposed approach emphasizes leveraging ensemble

learning to enhance prediction performance by combining the strengths of multiple classifiers. Comprehensive

evaluations demonstrate the robustness and reliability of the proposed model, with results highlighting its superior

accuracy and predictive capability in identifying defective software modules. This work aims to advance software

defect prediction by providing a cost-effective and efficient solution for early defect detection, ensuring improved

software quality and optimized resource allocation during testing.

Index Terms - Machine learning, software defect prediction, ensemble classification, heterogeneous classifiers,

random forest, support vector machine, naïve Bayes.

1. INTRODUCTION

In today's interconnected global society, the

software industry plays a critical role in driving

progress across all sectors. Rapid globalization has

effectively transformed the world into a "global

village," where software applications are not only

ubiquitous but also integral to daily life, business

operations, and critical infrastructure [1], [2]. The

COVID-19 pandemic has further accelerated this

reliance on software systems, as individuals and

organizations increasingly depend on online

platforms for communication, commerce, remote

work, and other essential activities [3], [4], [5]. As

software continues to shape every aspect of the

modern world, ensuring its quality has become a key

priority for the industry.

In the context of the Software Development Life

Cycle (SDLC), software development and quality

assurance (QA) are tightly linked through a

collaborative workflow. The process begins with the

development team implementing the code, which is

then handed over to the QA team for rigorous

testing. This evaluation phase involves identifying

and reporting defects or issues in the software.

Feedback is provided to the development team,

which works on rectifying the reported defects. This

iterative process continues until a high-quality,

defect-free software product is achieved [6], [7].

1571 JNAO Vol. 16, Issue. 1: 2025

Figure 1 illustrates this workflow from development

to QA within the SDLC. The primary objective of

this process is to ensure that the software meets the

required standards of quality, functionality, and

reliability before it is released to end-users.

However, achieving defect-free software is not

without its challenges. Three critical factors—time,

financial resources, and skilled manpower—

significantly impact the effectiveness of software

quality assurance. As the demand for faster software

delivery grows, the need for efficient and cost-

effective testing strategies becomes more pressing.

Companies are under increasing pressure to deliver

high-quality software within tight deadlines while

minimizing costs and optimizing the use of their

resources [8]. This has led to the growing interest in

automated approaches to defect prediction as a

means to streamline the QA process.

Software Defect Prediction (SDP) has emerged as a

promising solution to address these challenges. SDP

involves the application of machine learning (ML)

techniques to analyze historical software data and

predict the likelihood of defects in future software

modules. By using various software metrics—such

as code complexity, size, and historical defect

data—SDP models can help teams identify potential

defects before the testing phase [9]. This proactive

approach enables organizations to prioritize their

testing efforts, reduce the likelihood of post-release

defects, and ultimately improve software quality

while optimizing resource usage [10].

Consequently, SDP is gaining traction as a vital tool

in modern software development, helping

organizations meet the growing demand for reliable,

high-quality software in an increasingly complex

and interconnected world.

2. LITERATURE SURVEY

Software Defect Prediction (SDP) has become a

crucial research area due to the increasing demand

for high-quality software and the pressing need to

optimize resources, time, and manpower in software

development. The goal of SDP is to identify

defective software modules early in the development

cycle, thus allowing for targeted testing and

debugging. Over the past few decades, various

machine learning techniques and ensemble methods

have been explored to improve the predictive

accuracy and reliability of software defect

predictions. This literature survey explores the

significant contributions and methodologies in this

field, focusing on feature selection, class imbalance

problems, and ensemble learning approaches.

Neural networks have demonstrated remarkable

capabilities in detecting complex patterns in

software metrics, which has made them a popular

choice for software defect prediction models. M. S.

Alkhasawneh [11] presented a comprehensive study

on the use of neural networks combined with feature

selection techniques for software defect prediction.

The study emphasizes the importance of identifying

the most relevant features in the dataset to improve

prediction accuracy. Feature selection helps reduce

the dimensionality of the data, which leads to faster

training times and less overfitting, ultimately

resulting in more robust defect prediction models.

Alkhasawneh's research concludes that neural

networks, when combined with effective feature

selection methods, can outperform traditional

machine learning classifiers in terms of predictive

accuracy.

Similarly, the work of T. F. Husin and M. R. Pribadi

[12] explored the implementation of Least-Squares

Support Vector Machines (LSSVM) for defect

classification. In their approach, feature selection

was employed to identify the key features from the

dataset that had the most significant impact on the

1572 JNAO Vol. 16, Issue. 1: 2025

prediction process. The authors reported that this

hybrid approach improved prediction performance,

demonstrating that feature selection plays a critical

role in enhancing the accuracy of machine learning

models used for defect prediction.

One of the major challenges in SDP is the class

imbalance problem, where defective software

modules are often a minority class compared to non-

defective modules. This imbalance can lead to

biased models that favor the majority class, thereby

reducing the effectiveness of the predictions.

Various data sampling methods have been explored

to address this issue, including oversampling,

undersampling, and synthetic data generation

techniques such as SMOTE (Synthetic Minority

Over-sampling Technique).

B. J. Odejide et al. [14] conducted an empirical study

on different data sampling methods to address the

class imbalance problem in SDP. The authors

compared traditional sampling methods, such as

random oversampling and undersampling, with

more advanced techniques like SMOTE. Their

findings indicated that SMOTE-based sampling

methods provided superior performance by

generating synthetic samples of the minority class,

which helped balance the dataset and improve model

accuracy. Additionally, the study highlights that

combining data sampling techniques with machine

learning models like Random Forest and SVM can

significantly improve the detection of defective

software modules.

Another significant contribution to addressing class

imbalance was made by A. O. Balogun et al. [18],

who explored the use of ensemble learning

techniques combined with SMOTE-based methods

for software defect prediction. Their research

demonstrated that homogeneous ensemble methods,

which combine multiple instances of the same

classifier, can enhance predictive accuracy in

imbalanced datasets. The authors proposed a voting-

based ensemble method that aggregates the

predictions of different classifiers, thus creating a

more reliable and balanced defect prediction model.

Ensemble learning has emerged as a powerful

approach in SDP due to its ability to combine the

strengths of multiple classifiers to produce a more

accurate and robust final prediction. Several studies

have explored different ensemble techniques,

including voting-based, bagging, and stacking

methods.

F. Jiang et al. [16] introduced a random approximate

reduct-based ensemble learning approach for

software defect prediction. The authors combined

multiple classifiers in an ensemble to reduce the

variance and improve the robustness of the model.

Their approach also incorporated feature selection

methods to identify the most relevant features from

the dataset, which further enhanced the accuracy of

the predictions. The ensemble model outperformed

several state-of-the-art machine learning algorithms,

demonstrating the effectiveness of ensemble

learning in SDP.

The work of A. O. Balogun et al. [19] extended the

idea of ensemble learning by incorporating a ranking

and evaluation framework based on the Analytic

Network Process (ANP). The study evaluated

different ensemble classifiers using ANP to

determine the most effective combination of

classifiers for software defect prediction. The

authors found that ensemble methods consistently

outperformed single classifiers, with the best results

achieved by models that combined decision trees,

random forests, and support vector machines.

A study conducted by R. J. Jacob et al. [20] focused

on the application of voting-based ensemble

classification for software defect prediction. The

1573 JNAO Vol. 16, Issue. 1: 2025

authors explored the performance of several

ensemble methods, including majority voting,

weighted voting, and probabilistic voting, to

improve the accuracy of defect predictions. Their

findings showed that voting-based methods were

particularly effective in combining the strengths of

different classifiers, such as Random Forest, Naive

Bayes, and Support Vector Machines, to produce

more reliable predictions. The study concluded that

voting-based ensemble techniques offer a significant

advantage in defect prediction, particularly when

dealing with imbalanced datasets.

In addition to voting-based methods, stacking

ensembles have also gained attention in the

literature. Stacking combines the predictions of

multiple classifiers by using another machine

learning model, often referred to as the meta-learner,

to make the final prediction. A. Alsaeedi and M. Z.

Khan [21] conducted a comparative study of

different stacking ensemble methods for software

defect prediction. Their research explored various

combinations of base classifiers, such as Decision

Trees, SVM, and Artificial Neural Networks, and

used different meta-learners to optimize the final

predictions. The results of the study demonstrated

that stacking ensembles consistently outperformed

individual classifiers, with the best performance

achieved by models that combined decision trees

and neural networks.

3. METHODOLOGY

The proposed system aims to enhance software

defect prediction by leveraging advanced machine

learning techniques and ensemble learning

strategies. The system incorporates individual

classifiers such as Random Forest, Support Vector

Machine (SVM), Naive Bayes, and Multi-Layer

Perceptron (MLP) for baseline defect prediction

performance. To further improve accuracy and

robustness, ensemble methods like an Adaptive

Voting Classifier, which combines the strengths of

Random Forest, SVM, Naive Bayes, and MLP, are

utilized. Additionally, a Stacking Classifier

integrating Decision Tree, Random Forest, and

LightGBM models is implemented to exploit diverse

learning patterns and enhance defect detection

capability. Techniques like Synthetic Minority

Over-sampling Technique (SMOTE) are employed

to address class imbalance, while Particle Swarm

Optimization (PSO) aids in optimal feature

selection, ensuring the model is both efficient and

effective. This system is designed to identify

defective modules accurately, prioritizing high-

quality software development and reducing costs

associated with exhaustive testing processes.

Fig 1 Proposed Architecture

The diagram illustrates a typical machine learning

workflow for classification tasks. The process

begins with a dataset, which is then divided into

training and testing sets. The training data undergoes

pre-processing to prepare it for model training.

Subsequently, various machine learning algorithms,

including Random Forest (RF), Naive Bayes (NB),

Support Vector Machine (SVM), and Multilayer

Perceptron (MLP), are trained on the pre-processed

1574 JNAO Vol. 16, Issue. 1: 2025

training data. Once trained, these models are used to

classify the testing data, and their predictions are

compared to the actual labels to evaluate their

performance. Additionally, ensemble methods like

Voting Classifier and Stacking Classifier are

employed to combine the predictions of multiple

models, potentially improving overall accuracy.

i) Dataset:

The first step in the training phase involves the

collection of historical software defect datasets. For

this study, well-established benchmark datasets

from NASA’s Metrics Data Program (MDP)

repository were selected, including CM1, JM1,

MC2, MW1, PC1, PC3, and PC4. These datasets are

commonly used in software defect prediction

research, ensuring representativeness and

comparability with existing studies. Each dataset

corresponds to a single software component, with

instances representing software modules. These

modules contain various software quality attributes,

such as LOC_COMMENT, LOC_TOTAL,

CALL_PAIRS, HALSTEAD_LENGTH, and

HALSTEAD_CONSTANT, recorded during the

SDLC. The dependent attributes are used for

prediction, while the independent attribute indicates

whether a module is defective or non-defective [25].

Fig.2 Dataset for CM1

Fig.3 Datasets for JM1

Fig.4 Datasets for MC2

Fig.5 Datasets for MW1

Fig.6 Datasets for PC1

Fig.7 Datasets for PC3

Fig.8 Datasets for PC4

ii) Pre-Processing:

a) Data Processing: Data processing involves

crucial steps to ensure the dataset's quality and

suitability for predictive modeling. Initially,

duplicate data entries are identified and removed to

avoid redundancy and ensure consistency.

Unnecessary or irrelevant features are dropped

through cleaning to streamline the dataset. Label

1575 JNAO Vol. 16, Issue. 1: 2025

encoding is applied to convert categorical variables

into numerical format, enabling compatibility with

machine learning algorithms. These preprocessing

steps enhance the dataset's integrity and lay a strong

foundation for accurate and efficient model training.

b) Feature Selection: Feature selection focuses on

isolating the most relevant variables for prediction.

The input features (X) and target variable (y) are

carefully identified and extracted from the dataset.

This ensures the machine learning model receives

only the necessary data for training and testing,

reducing noise and computational overhead. By

refining the dataset to include only critical features

and the corresponding output labels, feature

selection optimizes the model's performance and

predictive accuracy.

c) Oversampling with SMOTE: Synthetic Minority

Over-sampling Technique (SMOTE) addresses

class imbalance in the dataset by generating

synthetic samples for the minority class. This

method creates new data points by interpolating

between existing samples, ensuring a balanced

distribution across classes. By enhancing the

representation of the minority class, SMOTE

prevents bias in machine learning models and

improves their ability to identify defective modules

accurately, especially in datasets with significant

class imbalances.

d) Feature Selection using PSO: Particle Swarm

Optimization (PSO) is employed for feature

selection to identify the most informative subset of

features. Inspired by the social behavior of particle

swarms, PSO iteratively evaluates combinations of

features to maximize the model's performance. By

retaining only the most relevant attributes and

discarding redundant or irrelevant ones, PSO

enhances the computational efficiency and

predictive accuracy of the defect prediction model,

ensuring an optimal balance between dataset

complexity and performance.

iii) Training & Testing:

Training and testing involve splitting the processed

dataset into two subsets: one for training the model

and the other for evaluation. The training subset is

used to build and optimize the model, allowing it to

learn patterns from the data. Once the model is

trained, it is tested on the testing subset, which it has

never seen before, to assess its generalization ability.

This approach ensures that the model can make

accurate predictions on new, unseen data, providing

a reliable measure of its performance.

iv) Algorithms:

Random Forest: Random Forest is an ensemble

learning method that constructs multiple decision

trees during training and merges their outputs to

improve accuracy and control overfitting. In this

project, it is used to predict software defects by

aggregating the results of multiple trees to provide a

more stable and accurate classification of whether a

module is defective or non-defective.

SVM (Support Vector Machine): SVM is a

supervised learning model that finds the optimal

hyperplane to separate classes in high-dimensional

space. In this project, SVM is employed to classify

software modules based on quality attributes,

distinguishing between defective and non-defective

modules with a high level of precision.

Naive Bayes: Naive Bayes is a probabilistic

classifier based on Bayes' theorem, assuming

independence between features. It is used in this

project to predict software defects by calculating the

likelihood of defectiveness based on historical data,

making it effective for handling categorical data and

large datasets.

1576 JNAO Vol. 16, Issue. 1: 2025

MLP (Multi-Layer Perceptron): MLP is a type of

artificial neural network with multiple layers of

neurons, used for classification tasks. In this project,

MLP is applied to learn complex patterns in the data

and predict software defects by modeling non-linear

relationships between features and the target

variable.

Adaptive Voting Classifier (RF + SVM + NB +

MLP): The Adaptive Voting Classifier combines

predictions from Random Forest, SVM, Naive

Bayes, and MLP using a weighted voting

mechanism to improve overall prediction accuracy.

This ensemble method leverages the strengths of

each individual model to provide a robust prediction

for software defects.

Stacking Classifier (DT + RF with LightGBM):

The Stacking Classifier integrates Decision Trees

(DT), Random Forest (RF), and LightGBM to create

a meta-model that improves predictive performance

by learning from the outputs of base models. In this

project, it is used to enhance defect prediction

accuracy by combining diverse models and

leveraging their individual strengths.

4. EXPERIMENTAL RESULTS

Accuracy: The accuracy of a test is its ability to

differentiate the patient and healthy cases correctly.

To estimate the accuracy of a test, we should

calculate the proportion of true positive and true

negative in all evaluated cases. Mathematically, this

can be stated as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP + TN

TP + FP + TN + FN
(1)

Precision: Precision evaluates the fraction of

correctly classified instances or samples among the

ones classified as positives. Thus, the formula to

calculate the precision is given by:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
True Positive

True Positive + False Positive
(2)

Recall: Recall is a metric in machine learning that

measures the ability of a model to identify all

relevant instances of a particular class. It is the ratio

of correctly predicted positive observations to the

total actual positives, providing insights into a

model's completeness in capturing instances of a

given class.

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP + FN
(3)

F1-Score: F1 score is a machine learning evaluation

metric that measures a model's accuracy. It

combines the precision and recall scores of a model.

The accuracy metric computes how many times a

model made a correct prediction across the entire

dataset.

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑅𝑒𝑐𝑎𝑙𝑙 X 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
∗ 100(1)

Sensitivity: Sensitivity is a measure of how well a

test or instrument can identify a condition in a

subject. It's calculated by comparing the number of

people who test positive for a condition to the actual

number of people who have the condition.

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
(5)

Specificity: It is calculated by identifying the

number of people who test negative for a condition

and dividing it by the total number of people without

the condition, which includes those who tested

negative and the false positives—those who tested

positive but did not have the disease.

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
(6)

1577 JNAO Vol. 16, Issue. 1: 2025

AUC-ROC Curve: The AUC-ROC Curve is a

performance measurement for classification

problems at various threshold settings. ROC plots

the True Positive Rate against the False Positive

Rate. AUC quantifies the overall ability of the model

to distinguish between classes, where a higher AUC

indicates better model performance.

𝐴𝑈𝐶 = ∑(𝐹𝑃𝑅𝑖+1 − 𝐹𝑃𝑅𝑖) ∙
𝑇𝑃𝑅𝑖+1 + 𝑇𝑃𝑅𝑖

2

𝑛−1

𝑖=1

(7)

Tables (1 to 7) evaluate the performance metrics—

accuracy, precision, recall, F1-score, AUC Score,

Specificity and Sensitivity—for each algorithm.

Across all datasets, the Stacking Classifier

consistently outperforms all other algorithms. The

tables also offer a comparative analysis of the

metrics for the other algorithms

Table.1 Performance Evaluation Metrics for CM1

ML Model Accuracy Precision Recall F1 Score AUC Score Specificity Sensitivity

Random Forest 0.918 0.921 0.918 0.918 1.000 0.918 0.918

Support Vector Machine 0.713 0.719 0.713 0.714 0.833 0.714 0.713

Naive Bayes 0.719 0.765 0.719 0.726 0.783 0.721 0.719

MLP Classifier 0.860 0.867 0.860 0.860 0.961 0.859 0.860

Adaptive Voting Classifier 0.865 0.866 0.865 0.866 0.971 0.865 0.865

Stacking Classifier 0.924 0.924 0.924 0.924 1.000 0.924 0.924

Graph.1 Comparison Graphs for CM1

Table.2 Performance Evaluation Metrics for JM1

ML Model Accuracy Precision Recall F1 Score AUC

Score

Specificity Sensitivity

Random Forest 0.840 0.840 0.840 0.840 1.000 0.840 0.840

0

0.2

0.4

0.6

0.8

1

1.2

Random Forest Support Vector
Machine

Naive Bayes MLP Classifier Adaptive Voting
Classifier

Stacking Classifier

COMPARISON GRAPHS FOR CM1

Accuracy Precision Recall F1 Score AUC Score Specificity Sensitivity

1578 JNAO Vol. 16, Issue. 1: 2025

Support Vector Machine 0.588 0.786 0.588 0.633 0.643 0.588 0.588

Naive Bayes 0.582 0.825 0.582 0.639 0.624 0.582 0.582

MLP Classifier 0.608 0.622 0.608 0.611 0.613 0.608 0.608

Adaptive Voting Classifier 0.661 0.735 0.661 0.674 0.851 0.661 0.661

Stacking Classifier 0.836 0.837 0.836 0.836 1.000 0.836 0.836

Graph.2 Comparison Graphs for JM1

Table.3 Performance Evaluation Metrics for MC2

ML Model Accuracy Precision Recall F1 Score AUC

Score

Specificity Sensitivity

Random Forest 0.755 0.768 0.755 0.756 1.000 0.758 0.755

Support Vector Machine 0.633 0.664 0.633 0.639 0.702 0.627 0.633

Naive Bayes 0.694 0.838 0.694 0.719 0.750 0.683 0.694

MLP Classifier 0.694 0.702 0.694 0.695 0.913 0.691 0.694

Adaptive Voting Classifier 0.735 0.804 0.735 0.745 0.954 0.727 0.735

Stacking Classifier 0.735 0.754 0.735 0.737 1.000 0.739 0.735

Graph.3 Comparison Graphs for MC2

0

0.2

0.4

0.6

0.8

1

1.2

Random Forest Support Vector
Machine

Naive Bayes MLP Classifier Adaptive Voting
Classifier

Stacking Classifier

COMPARISON GRAPHS FOR JM1

Accuracy Precision Recall F1 Score AUC Score Specificity Sensitivity

1579 JNAO Vol. 16, Issue. 1: 2025

Table.4 Performance Evaluation Metrics for MW1

ML Model Accuracy Precision Recall F1 Score AUC

Score

Specificity Sensitivity

Random Forest 0.919 0.919 0.919 0.919 1.000 0.919 0.919

Support Vector Machine 0.743 0.782 0.743 0.748 0.772 0.743 0.743

Naive Bayes 0.699 0.700 0.699 0.699 0.726 0.699 0.699

MLP Classifier 0.794 0.798 0.794 0.795 0.923 0.794 0.794

Adaptive Voting Classifier 0.801 0.815 0.801 0.803 0.933 0.801 0.801

Stacking Classifier 0.897 0.901 0.897 0.897 1.000 0.897 0.897

Graph.4 Comparison Graphs for MW1

0

0.2

0.4

0.6

0.8

1

1.2

Random Forest Support Vector
Machine

Naive Bayes MLP Classifier Adaptive Voting
Classifier

Stacking Classifier

COMPARISON GRAPHS FOR MC2

Accuracy Precision Recall F1 Score AUC Score Specificity Sensitivity

1580 JNAO Vol. 16, Issue. 1: 2025

Table.5 Performance Evaluation Metrics for PC1

ML Model Accuracy Precision Recall F1 Score AUC Score Specificity Sensitivity

Random Forest 0.938 0.938 0.938 0.938 1.000 0.938 0.938

Support Vector Machine 0.780 0.782 0.780 0.781 0.867 0.780 0.780

Naive Bayes 0.638 0.771 0.638 0.664 0.813 0.640 0.638

MLP Classifier 0.886 0.893 0.886 0.887 0.975 0.886 0.886

Adaptive Voting Classifier 0.871 0.871 0.871 0.871 0.974 0.871 0.871

Stacking Classifier 0.922 0.923 0.922 0.922 1.000 0.923 0.922

Graph.5 Comparison Graphs for PC1

0

0.2

0.4

0.6

0.8

1

1.2

Random Forest Support Vector
Machine

Naive Bayes MLP Classifier Adaptive Voting
Classifier

Stacking
Classifier

COMPARISON GRAPHS FOR MW1

Accuracy Precision Recall F1 Score AUC Score Specificity Sensitivity

1581 JNAO Vol. 16, Issue. 1: 2025

Table.6 Performance Evaluation Metrics for PC3

ML Model Accuracy Precision Recall F1 Score AUC

Score

Specificity Sensitivity

Random Forest 0.936 0.937 0.936 0.936 1.000 0.936 0.936

Support Vector Machine 0.829 0.835 0.829 0.829 0.870 0.829 0.829

Naive Bayes 0.668 0.752 0.668 0.682 0.788 0.668 0.668

MLP Classifier 0.850 0.855 0.850 0.850 0.941 0.850 0.850

Adaptive Voting Classifier 0.875 0.885 0.875 0.875 0.978 0.875 0.875

Stacking Classifier 0.924 0.927 0.924 0.924 1.000 0.924 0.924

Graph.6 Comparison Graphs for PC3

Table.7 Performance Evaluation Metrics for PC4

0

0.2

0.4

0.6

0.8

1

1.2

Random Forest Support Vector
Machine

Naive Bayes MLP Classifier Adaptive Voting
Classifier

Stacking Classifier

COMPARISON GRAPHS FOR PC1

Accuracy Precision Recall F1 Score AUC Score Specificity Sensitivity

0

0.2

0.4

0.6

0.8

1

1.2

Random Forest Support Vector
Machine

Naive Bayes MLP Classifier Adaptive Voting
Classifier

Stacking Classifier

COMPARISON GRAPHS FOR PC3

Accuracy Precision Recall F1 Score AUC Score Specificity Sensitivity

1582 JNAO Vol. 16, Issue. 1: 2025

ML Model Accuracy Precision Recall F1 Score AUC

Score

Specificity Sensitivity

Random Forest 0.929 0.930 0.929 0.929 1.000 0.929 0.929

Support Vector Machine 0.796 0.820 0.796 0.798 0.905 0.796 0.796

Naive Bayes 0.700 0.774 0.700 0.711 0.826 0.700 0.700

MLP Classifier 0.905 0.910 0.905 0.906 0.982 0.905 0.905

Adaptive Voting Classifier 0.904 0.904 0.904 0.904 0.987 0.904 0.904

Stacking Classifier 0.935 0.936 0.935 0.935 1.000 0.935 0.935

Graph.7 Comparison Graphs for PC4

Accuracy is represented in light blue, precision in orange, recall in grey, F1-Score in light yellow, AUC in blue,

Specificity in green and Sensitivity in dark blue in Graphs (1 to 7). In comparison to the other models, the Stacking

Classifier shows superior performance across all datasets, achieving the highest values. The graphs above visually

illustrate these findings.

Fig.9 Home Page

In the above figure 9, this is a user interface

dashboard, it is a welcome message for navigating

page.

Fig.10 User input Page

0

0.2

0.4

0.6

0.8

1

1.2

Random Forest Support Vector
Machine

Naive Bayes MLP Classifier Adaptive Voting
Classifier

Stacking Classifier

COMPARISON GRAPHS FOR PC4

Accuracy Precision Recall F1 Score AUC Score Specificity Sensitivity

1583 JNAO Vol. 16, Issue. 1: 2025

In the above figure 10, this is a user input page, using

this user can upload Data from DatasetCM1.

Fig.11 Test result for CM1

In the above figure 11, this is a result screen, in this

user will get output.

Fig.12 User input Page

In the above figure 12, this is a user input page, using

this user can upload data from PC4 dataset.

Fig.13 Test result for PC4

In the above figure 13, this is a result screen, in this

user will get output.

5. CONCLUSION

Software defect prediction aims to identify faulty

modules before the testing phase, enabling a focus

on testing only those modules likely to have defects.

An efficient defect prediction model significantly

reduces software development costs by optimizing

resources during quality assurance activities. Using

datasets such as CM1, JM1, MC2, MW1, PC1, PC3,

and PC4, the system integrates advanced techniques

like SMOTE for addressing class imbalance and

Particle Swarm Optimization (PSO) for feature

selection, ensuring balanced and relevant input data

for training. Among the various approaches

evaluated, the Stacking Classifier demonstrated the

highest accuracy across all datasets, effectively

leveraging diverse learning patterns to enhance

prediction capabilities. This combination of

techniques and high-performance ensemble learning

underscores the importance of identifying defective

modules with precision, streamlining testing

processes, and contributing to the delivery of high-

quality software within reduced timelines and costs.

6. FUTURE SCOPE

Future work can explore the integration of deep

learning models, such as CNNs and LSTMs, to

capture complex patterns in software defect data.

Incorporating explainable AI techniques could

enhance the interpretability of predictions, aiding

developers in understanding defect causes.

Expanding the approach to larger, real-world

datasets and dynamic software systems would

improve scalability and generalizability.

Additionally, combining advanced sampling

methods with optimization algorithms may further

refine defect prediction performance, supporting

1584 JNAO Vol. 16, Issue. 1: 2025

cost-effective, high-quality software development in

diverse domains.

REFERENCES

[1] Z. M. Zain, S. Sakri, and N. H. A. Ismail,

‘‘Application of deep learning in software defect

prediction: Systematic literature review and meta

analysis,’’ Inf. Softw. Technol., vol. 158, Jun. 2023,

Art. no. 107175, doi: 10.1016/j.infsof.2023.107175.

[2] M. Unterkalmsteiner et al., ‘‘Software startups—

A research agenda,’’ 2023, arXiv:2308.12816.

[3] S. Aftab, S. Abbas, T. M. Ghazal, M. Ahmad, H.

A. Hamadi, C. Y. Yeun, and M. A. Khan, ‘‘A cloud-

based software defect prediction system using data

and decision-level machine learning fusion,’’

Mathematics, vol. 11, no. 3, p. 632, Jan. 2023, doi:

10.3390/math11030632.

[4] S. Goyal, ‘‘Heterogeneous stacked ensemble

classifier for software defect prediction,’’ in Proc.

6th Int. Conf. Parallel, Distrib. Grid Comput.

(PDGC), Waknaghat, India, Nov. 2020, pp. 126–

130, doi: 10.1109/PDGC50313.2020.9315754.

[5] S. Mehta and K. S. Patnaik, ‘‘Stacking based

ensemble learning for improved software defect

prediction,’’ in Proc. 5th Int. Conf. Microelectron.,

Comput. Commun. Syst., vol. 748, 2021, pp. 167–

178.

[6] M. Shafiq, F. H. Alghamedy, N. Jamal, T.

Kamal, Y. I. Daradkeh, and M. Shabaz, ‘‘Retracted:

Scientific programming using optimized machine

learning techniques for software fault prediction to

improve software quality,’’ IET Softw., vol. 17, no.

4, pp. 694–704, Jan. 2023, doi: 10.1049/sfw2.12091.

[7] Y. Tang, Q. Dai, M. Yang, T. Du, and L. Chen,

‘‘Software defect prediction ensemble learning

algorithm based on adaptive variable sparrow search

algorithm,’’ Int. J. Mach. Learn. Cybern., vol. 14,

no. 6, pp. 1967–1987, Jan. 2023, doi:

10.1007/s13042-022-01740-2.

[8] S. Goyal, ‘‘3PcGE: 3-parent child-based genetic

evolution for software defect prediction,’’ Innov.

Syst. Softw. Eng., vol. 19, no. 2, pp. 197–216, Jun.

2023, doi: 10.1007/s11334-021-00427-1.

[9] J. Liu, J. Ai, M. Lu, J. Wang, and H. Shi,

‘‘Semantic feature learning for software defect

prediction from source code and external

knowledge,’’ J. Syst. Softw., vol. 204, Oct. 2023,

Art. no. 111753, doi: 10.1016/j.jss.2023.111753.

[10] A. K. Gangwar and S. Kumar, ‘‘Concept drift

in software defect prediction: A method for

detecting and handling the drift,’’ ACM Trans.

Internet Technol., vol. 23, no. 2, pp. 1–28, May

2023, doi: 10.1145/3589342.

[11] M. S. Alkhasawneh, ‘‘Software defect

prediction through neural network and feature

selections,’’ Appl. Comput. Intell. Soft Comput.,

vol. 2022, pp. 1–16, Sep. 2022, doi:

10.1155/2022/2581832.

[12] T. F. Husin and M. R. Pribadi,

‘‘Implementation of LSSVM in classification of

software defect prediction data with feature

selection,’’ in Proc. 9th Int. Conf. Electr. Eng.,

Comput. Sci. Informat. (EECSI), Jakarta, Indonesia,

Oct. 2022, pp. 126–131, doi:

10.23919/EECSI56542.2022. 9946611.

[13] J. A. Richards, ‘‘Supervised classification

techniques,’’ in Remote Sensing Digital Image

Analysis. Cham, Switzerland: Springer, 2022, pp.

263–367.

[14] B. J. Odejide, A. O. Bajeh, A. O. Balogun, Z.

O. Alanamu, K. S. Adewole, A. G. Akintola, and S.

1585 JNAO Vol. 16, Issue. 1: 2025

A. Salihu, ‘‘An empirical study on data sampling

methods in addressing class imbalance problem in

software defect prediction,’’ in Proc. Comput. Sci.

Online Conf. Cham, Switzerland: Springer, Apr.

2022, pp. 594–610.

[15] X. Wu and J. Wang, ‘‘Application of bagging,

boosting and stacking ensemble and EasyEnsemble

methods for landslide susceptibility mapping in the

three Gorges reservoir area of China,’’ Int. J.

Environ. Res. Public Health, vol. 20, no. 6, p. 4977,

Mar. 2023, doi: 10.3390/ijerph20064977.

[16] F. Jiang, X. Yu, D. Gong, and J. Du, ‘‘A random

approximate reduct based ensemble learning

approach and its application in software defect

prediction,’’ Inf. Sci., vol. 609, pp. 1147–1168, Sep.

2022, doi: 10.1016/j.ins.2022.07.130.

[17] H. Chen, X.-Y. Jing, Y. Zhou, B. Li, and B. Xu,

‘‘Aligned metric representation based balanced

multiset ensemble learning for heterogeneous defect

prediction,’’ Inf. Softw. Technol., vol. 147, Jul.

2022, Art. no. 106892, doi:

10.1016/j.infsof.2022.106892.

[18] A. O. Balogun, A. O. Bajeh, V. A. Orie, and A.

W. Yusuf-Asaju, ‘‘Software defect prediction using

ensemble learning: An ANP based evaluation

method,’’ FUOYE J. Eng. Technol., vol. 3, no. 2, pp.

50–55, Sep. 2018, doi: 10.46792/fuoyejet.v3i2.200.

[19] A. O. Balogun, F. B. Lafenwa-Balogun, H. A.

Mojeed, V. E. Adeyemo, O. N. Akande, A. G.

Akintola, A. O. Bajeh, and F. E. Usman-Hamza,

‘‘SMOTE-based homogeneous ensemble methods

for software defect prediction,’’ in Computational

Science and Its Applications—ICCSA 2020, vol.

12254, O. Gervasi, B. Murgante, S. Misra, C. Garau,

I. B. D. Taniar, B. O. Apduhan, A. M. A. C. Rocha,

E. Tarantino, C. M. Torre, and Y. Karaca, Eds.

Cham, Switzerland: Springer, 2020, pp. 615–631.

[20] R. J. Jacob, R. J. Kamat, N. M. Sahithya, S. S.

John, and S. P. Shankar, ‘‘Voting based ensemble

classification for software defect prediction,’’ in

Proc. IEEE Mysore Sub Sect. Int. Conf.

(MysuruCon), Hassan, India, Oct. 2021, pp. 358–

365, doi: 10.1109/MysuruCon52639.2021.

9641713.

[21] A. Alsaeedi and M. Z. Khan, ‘‘Software defect

prediction using supervised machine learning and

ensemble techniques: A comparative study,’’ J.

Softw. Eng. Appl., vol. 12, no. 5, pp. 85–100, 2019,

doi: 10.4236/jsea.2019.125007.

[22] A. Iqbal and S. Aftab, ‘‘A classification

framework for software defect prediction using

multi-filter feature selection technique and MLP,’’

Int. J. Mod. Educ. Comput. Sci., vol. 12, no. 1, pp.

18–25, Feb. 2020, doi: 10.5815/ijmecs.2020.01.03.

[23] M. Cetiner and O. K. Sahingoz, ‘‘A

comparative analysis for machine learning based

software defect prediction systems,’’ in Proc. 11th

Int. Conf. Comput., Commun. Netw. Technol.

(ICCCNT), Kharagpur, India, Jul. 2020, pp. 1–7,

doi: 10.1109/ICCCNT49239.2020.9225352.

[24] K. Wang, L. Liu, C. Yuan, and Z. Wang,

‘‘Software defect prediction model based on

LASSO–SVM,’’ Neural Comput. Appl., vol. 33, no.

14, pp. 8249–8259, Jul. 2021, doi: 10.1007/s00521-

020-04960-1.

[25] M. Shepperd, Q. Song, Z. Sun, and C. Mair,

‘‘Data quality: Some comments on the NASA

software defect datasets,’’ IEEE Trans. Softw. Eng.,

vol. 39, no. 9, pp. 1208–1215, Sep. 2013, doi:

10.1109/TSE.2013.11.

1586 JNAO Vol. 16, Issue. 1: 2025

AUTHOR

Mrs. Jasti kumari is

an Assistant

Professor in the

Department of

Master of Computer

Applications at QIS

College of

Engineering and Technology, Ongole, Andhra

Pradesh. She earned Master of Computer

Applications (MCA) from Osmania University,

Hyderabad, and her M.Tech in Computer Science

and Engineering (CSE) from Jawaharlal Nehru

Technological University, Kakinada (JNTUK). Her

research interests include Machine Learning,

programming languages. She is committed to

advancing research and forecasting innovation while

mentoring students to excel in both academic &

professional pursuits.

